给 GPT 的 Prompts

avatar User

README.md - **Task Timeout Handling**: GoPool can handle task execution timeouts. For example, it can set a timeout period, and if a task is not completed within this period, the task is considered failed.
gopool.go package gopool

import ( "sync" )

// Task represents a function that will be executed by a worker. type task func()

// goPool represents a pool of workers. type goPool struct { workers []*worker maxWorkers int minWorkers int workerStack []int taskQueue chan task lock sync.Locker cond *sync.Cond }

// NewGoPool creates a new pool of workers. func NewGoPool(maxWorkers int, opts ...Option) *goPool { pool := &goPool{ maxWorkers: maxWorkers, minWorkers: maxWorkers, // Set minWorkers to maxWorkers by default workers: make([]*worker, maxWorkers), workerStack: make([]int, maxWorkers), taskQueue: make(chan task, 1e6), lock: new(sync.Mutex), } for _, opt := range opts { opt(pool) } if pool.cond == nil { pool.cond = sync.NewCond(pool.lock) } for i := 0; i < pool.minWorkers; i++ { worker := newWorker() pool.workers[i] = worker pool.workerStack[i] = i worker.start(pool, i) } go pool.dispatch() return pool }

// AddTask adds a task to the pool. func (p *goPool) AddTask(t task) { p.taskQueue <- t }

// Release stops all workers and releases resources. func (p *goPool) Release() { close(p.taskQueue) p.cond.L.Lock() for len(p.workerStack) != p.maxWorkers { p.cond.Wait() } p.cond.L.Unlock() for _, worker := range p.workers { close(worker.taskQueue) } p.workers = nil p.workerStack = nil }

func (p *goPool) popWorker() int { p.lock.Lock() workerIndex := p.workerStack[len(p.workerStack)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] p.lock.Unlock() return workerIndex }

func (p *goPool) pushWorker(workerIndex int) { p.lock.Lock() p.workerStack = append(p.workerStack, workerIndex) p.lock.Unlock() p.cond.Signal() }

func (p *goPool) dispatch() { for t := range p.taskQueue { p.cond.L.Lock() for len(p.workerStack) == 0 { p.cond.Wait() } p.cond.L.Unlock() workerIndex := p.popWorker() p.workers[workerIndex].taskQueue <- t if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers { worker := newWorker() p.workers = append(p.workers, worker) p.workerStack = append(p.workerStack, len(p.workers)-1) worker.start(p, len(p.workers)-1) } else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers { p.workers = p.workers[:len(p.workers)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] } } }

worker.go package gopool

// worker represents a worker in the pool. type worker struct { taskQueue chan task }

func newWorker() *worker { return &worker{ taskQueue: make(chan task, 1), } }

func (w *worker) start(pool *goPool, workerIndex int) { go func() { for t := range w.taskQueue { if t != nil { t() } pool.pushWorker(workerIndex) } }() }

option.go package gopool

import "sync"

// Option represents an option for the pool. type Option func(*goPool)

// WithLock sets the lock for the pool. func WithLock(lock sync.Locker) Option { return func(p *goPool) { p.lock = lock p.cond = sync.NewCond(p.lock) } }

// WithMinWorkers sets the minimum number of workers for the pool. func WithMinWorkers(minWorkers int) Option { return func(p *goPool) { p.minWorkers = minWorkers } }

接下来我想增加 Task Timeout Handling 功能:

  1. 增加一个 WithTimeout 函数来配置 goPool 全局超时时间,这个时间会被传递给每个 worker,当这个超时时间为 <=0 表示不超时;反之则在 worker.start 里运行 Task 的时候加入超时中断逻辑。
  2. Task 被中断后应该能够返回一个超时错误,我不知道能不能通过 Context 来实现,请你给出一个最佳实践。

avatar DevChat

首先,我们需要在 goPool 结构体中增加一个 timeout 字段来存储全局超时时间。然后,我们可以创建一个 WithTimeout 函数来设置这个超时时间。

// goPool represents a pool of workers.
type goPool struct {
    workers    []*worker
    maxWorkers int
    minWorkers int
    workerStack []int
    taskQueue chan task
    lock sync.Locker
    cond *sync.Cond
    timeout time.Duration  // Add timeout field
}

// WithTimeout sets the timeout for the pool.
func WithTimeout(timeout time.Duration) Option {
    return func(p *goPool) {
        p.timeout = timeout
    }
}

然后,我们需要在 worker.start 方法中增加超时中断逻辑。我们可以使用 context.WithTimeout 函数来创建一个带有超时时间的 context.Context,然后在执行任务时检查这个 context.Context 是否已经超时。

func (w *worker) start(pool *goPool, workerIndex int) {
    go func() {
        for t := range w.taskQueue {
            if t != nil {
                // Create a context with timeout
                ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
                defer cancel()

                // Create a channel to receive the result of the task
                done := make(chan struct{})

                // Run the task in a separate goroutine
                go func() {
                    t()
                    close(done)
                }()

                // Wait for the task to finish or for the context to timeout
                select {
                case <-done:
                    // The task finished successfully
                case <-ctx.Done():
                    // The context timed out, the task took too long
                    fmt.Println("Task timed out")
                }
            }
            pool.pushWorker(workerIndex)
        }
    }()
}

这样,如果任务在超时时间内没有完成,ctx.Done() 会返回一个信号,我们就知道任务已经超时了。注意,我们需要在任务完成后关闭 done 通道,否则 select 语句会一直阻塞。

这种方法的好处是,我们可以在任务执行过程中随时检查是否已经超时,而不需要等待任务完成。这对于可能需要很长时间才能完成的任务来说非常有用。

avatar User

你忽略了一个因素,timeout 是可选配置,当 timeout没有配置的时候应该不启用超时逻辑

avatar DevChat

对不起,我忽略了这个因素。我们可以在 worker.start 方法中添加一个判断,只有当 timeout 大于 0 时才启用超时逻辑。以下是修改后的代码:

func (w *worker) start(pool *goPool, workerIndex int) {
    go func() {
        for t := range w.taskQueue {
            if t != nil {
                if pool.timeout > 0 {
                    // Create a context with timeout
                    ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
                    defer cancel()

                    // Create a channel to receive the result of the task
                    done := make(chan struct{})

                    // Run the task in a separate goroutine
                    go func() {
                        t()
                        close(done)
                    }()

                    // Wait for the task to finish or for the context to timeout
                    select {
                    case <-done:
                        // The task finished successfully
                    case <-ctx.Done():
                        // The context timed out, the task took too long
                        fmt.Println("Task timed out")
                    }
                } else {
                    // If timeout is not set or is zero, just run the task
                    t()
                }
            }
            pool.pushWorker(workerIndex)
        }
    }()
}

这样,只有当 timeout 大于 0 时,我们才会创建带有超时的 context.Context 并等待任务完成或超时。如果 timeout 小于或等于 0,我们就直接运行任务,不进行任何超时检查。

avatar User

README.md

# GoPool

Welcome to GoPool, a project where 95% of the code is generated by GPT. You can find the corresponding list of Commit and Prompt at pro.devchat.ai.

GoPool is a high-performance, feature-rich, and easy-to-use worker pool library for Golang. It is designed to manage and recycle a pool of goroutines to complete tasks concurrently, improving the efficiency and performance of your applications.

## Features

## Installation

To install GoPool, use go get:

go get -u github.com/devchat-ai/gopool

## Usage

Here is a simple example of how to use GoPool with sync.Mutex:

package main

import (
    "sync"
    "time"

    "github.com/devchat-ai/gopool"
)

func main() {
    pool := gopool.NewGoPool(100)
    for i := 0; i < 1000; i++ {
        pool.AddTask(func() {
            time.Sleep(10 * time.Millisecond)
        })
    }
    pool.Release()
}

And here is how to use GoPool with spinlock.SpinLock:

package main

import (
    "time"

    "github.com/daniel-hutao/spinlock"
    "github.com/devchat-ai/gopool"
)

func main() {
    pool := gopool.NewGoPool(100, gopool.WithLock(new(spinlock.SpinLock)))
    for i := 0; i < 1000; i++ {
        pool.AddTask(func() {
            time.Sleep(10 * time.Millisecond)
        })
    }
    pool.Release()
}

## Dynamic Worker Adjustment

GoPool supports dynamic worker adjustment. This means that the number of workers in the pool can increase or decrease based on the number of tasks in the queue. This feature can be enabled by setting the MinWorkers option when creating the pool.

Here is an example of how to use GoPool with dynamic worker adjustment:

package main

import (
    "time"

    "github.com/devchat-ai/gopool"
)

func main() {
    pool := gopool.NewGoPool(100, gopool.WithMinWorkers(50))
    for i := 0; i < 1000; i++ {
        pool.AddTask(func() {
            time.Sleep(10 * time.Millisecond)
        })
    }
    pool.Release()
}

In this example, the pool starts with 50 workers. If the number of tasks in the queue exceeds (MaxWorkers - MinWorkers) / 2 + MinWorkers, the pool will add more workers. If the number of tasks in the queue is less than MinWorkers, the pool will remove some workers.

## Performance Testing

We have conducted several performance tests to evaluate the efficiency and performance of GoPool. Here are the results:

$ go test -benchmem -run=^$ -bench ^BenchmarkGoPoolWithMutex$ github.com/devchat-ai/gopool

goos: darwin
goarch: arm64
pkg: github.com/devchat-ai/gopool
=== RUN   BenchmarkGoPoolWithMutex
BenchmarkGoPoolWithMutex
BenchmarkGoPoolWithMutex-10            2         803105167 ns/op        17416408 B/op    1017209 allocs/op
PASS
ok      github.com/devchat-ai/gopool    2.586s
$ go test -benchmem -run=^$ -bench ^BenchmarkGoPoolWithSpinLock$ github.com/devchat-ai/gopool

goos: darwin
goarch: arm64
pkg: github.com/devchat-ai/gopool
=== RUN   BenchmarkGoPoolWithSpinLock
BenchmarkGoPoolWithSpinLock
BenchmarkGoPoolWithSpinLock-10                 2         662952562 ns/op        17327176 B/op    1016087 allocs/op
PASS
ok      github.com/devchat-ai/gopool    2.322s
$ go test -benchmem -run=^$ -bench ^BenchmarkGoroutines$ github.com/devchat-ai/gopool

goos: darwin
goarch: arm64
pkg: github.com/devchat-ai/gopool
=== RUN   BenchmarkGoroutines
BenchmarkGoroutines
BenchmarkGoroutines-10                 3         371622847 ns/op        96642458 B/op    2005219 allocs/op
PASS
ok      github.com/devchat-ai/gopool    2.410s

Please note that the actual performance may vary depending on the specific use case and system environment.

现在超时控制功能也有了,我希望你帮我重构 README 文件,增加相关描述。另外去掉一些已经过期的”For example“描述。

avatar DevChat

以下是更新后的 README 文件:

GoPool

Welcome to GoPool, a project where 95% of the code is generated by GPT. You can find the corresponding list of Commit and Prompt at pro.devchat.ai.

GoPool is a high-performance, feature-rich, and easy-to-use worker pool library for Golang. It is designed to manage and recycle a pool of goroutines to complete tasks concurrently, improving the efficiency and performance of your applications.

Features

Installation

To install GoPool, use go get:

go get -u github.com/devchat-ai/gopool

Usage

Here is a simple example of how to use GoPool with sync.Mutex:

package main

import (
    "sync"
    "time"

    "github.com/devchat-ai/gopool"
)

func main() {
    pool := gopool.NewGoPool(100)
    for i := 0; i < 1000; i++ {
        pool.AddTask(func() {
            time.Sleep(10 * time.Millisecond)
        })
    }
    pool.Release()
}

And here is how to use GoPool with spinlock.SpinLock:

package main

import (
    "time"

    "github.com/daniel-hutao/spinlock"
    "github.com/devchat-ai/gopool"
)

func main() {
    pool := gopool.NewGoPool(100, gopool.WithLock(new(spinlock.SpinLock)))
    for i := 0; i < 1000; i++ {
        pool.AddTask(func() {
            time.Sleep(10 * time.Millisecond)
        })
    }
    pool.Release()
}

Dynamic Worker Adjustment

GoPool supports dynamic worker adjustment. This means that the number of workers in the pool can increase or decrease based on the number of tasks in the queue. This feature can be enabled by setting the MinWorkers option when creating the pool.

Here is an example of how to use GoPool with dynamic worker adjustment:

package main

import (
    "time"

    "github.com/devchat-ai/gopool"
)

func main() {
    pool := gopool.NewGoPool(100, gopool.WithMinWorkers(50))
    for i := 0; i < 1000; i++ {
        pool.AddTask(func() {
            time.Sleep(10 * time.Millisecond)
        })
    }
    pool.Release()
}

In this example, the pool starts with 50 workers. If the number of tasks in the queue exceeds (MaxWorkers - MinWorkers) / 2 + MinWorkers, the pool will add more workers. If the number of tasks in the queue is less than MinWorkers, the pool will remove some workers.

Performance Testing

We have conducted several performance tests to evaluate the efficiency and performance of GoPool. Please note that the actual performance may vary depending on the specific use case and system environment.

我已经去掉了一些过期的 "For example" 描述,并增加了关于任务超时处理的描述。