给 GPT 的 Prompts
User
gopool.go
package gopoolimport ( "sync" "time" )
// task represents a function that will be executed by a worker. // It returns a result and an error. type task func() (interface{}, error)
// goPool represents a pool of workers. type goPool struct { workers []*worker maxWorkers int minWorkers int workerStack []int taskQueue chan task lock sync.Locker cond *sync.Cond timeout time.Duration resultCallback func(interface{}) errorCallback func(error) }
// NewGoPool creates a new pool of workers. func NewGoPool(maxWorkers int, opts ...Option) *goPool { pool := &goPool{ maxWorkers: maxWorkers, minWorkers: maxWorkers, // Set minWorkers to maxWorkers by default workers: make([]*worker, maxWorkers), workerStack: make([]int, maxWorkers), taskQueue: make(chan task, 1e6), lock: new(sync.Mutex), timeout: 0, } for _, opt := range opts { opt(pool) } if pool.cond == nil { pool.cond = sync.NewCond(pool.lock) } for i := 0; i < pool.minWorkers; i++ { worker := newWorker() pool.workers[i] = worker pool.workerStack[i] = i worker.start(pool, i) } go pool.dispatch() return pool }
// AddTask adds a task to the pool. func (p *goPool) AddTask(t task) { p.taskQueue <- t }
// Release stops all workers and releases resources. func (p *goPool) Release() { close(p.taskQueue) p.cond.L.Lock() for len(p.workerStack) != p.maxWorkers { p.cond.Wait() } p.cond.L.Unlock() for _, worker := range p.workers { close(worker.taskQueue) } p.workers = nil p.workerStack = nil }
func (p *goPool) popWorker() int { p.lock.Lock() workerIndex := p.workerStack[len(p.workerStack)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] p.lock.Unlock() return workerIndex }
func (p *goPool) pushWorker(workerIndex int) { p.lock.Lock() p.workerStack = append(p.workerStack, workerIndex) p.lock.Unlock() p.cond.Signal() }
func (p *goPool) dispatch() { for t := range p.taskQueue { p.cond.L.Lock() for len(p.workerStack) == 0 { p.cond.Wait() } p.cond.L.Unlock() workerIndex := p.popWorker() p.workers[workerIndex].taskQueue <- t if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers { worker := newWorker() p.workers = append(p.workers, worker) p.workerStack = append(p.workerStack, len(p.workers)-1) worker.start(p, len(p.workers)-1) } else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers { p.workers = p.workers[:len(p.workers)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] } } }
worker.go
package gopoolimport ( "context" "fmt" )
// worker represents a worker in the pool. type worker struct { taskQueue chan task }
func newWorker() *worker { return &worker{ taskQueue: make(chan task, 1), } }
func (w *worker) start(pool *goPool, workerIndex int) { go func() { for t := range w.taskQueue { if t != nil { var result interface{} var err error
if pool.timeout > 0 {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
case <-ctx.Done():
// The context timed out, the task took too long
if pool.errorCallback != nil {
pool.errorCallback(fmt.Errorf("Task timed out"))
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
}
pool.pushWorker(workerIndex)
}
}()
}
option.go
package gopoolimport ( "sync" "time" )
// Option represents an option for the pool. type Option func(*goPool)
// WithLock sets the lock for the pool. func WithLock(lock sync.Locker) Option { return func(p *goPool) { p.lock = lock p.cond = sync.NewCond(p.lock) } }
// WithMinWorkers sets the minimum number of workers for the pool. func WithMinWorkers(minWorkers int) Option { return func(p *goPool) { p.minWorkers = minWorkers } }
// WithTimeout sets the timeout for the pool. func WithTimeout(timeout time.Duration) Option { return func(p *goPool) { p.timeout = timeout } }
// WithResultCallback sets the result callback for the pool. func WithResultCallback(callback func(interface{})) Option { return func(p *goPool) { p.resultCallback = callback } }
// WithErrorCallback sets the error callback for the pool. func WithErrorCallback(callback func(error)) Option { return func(p *goPool) { p.errorCallback = callback } }
接下来我想增加 task retry 功能,我依旧希望通过 Option 方式来配置,让用户自定义重试次数。当然你要注意当用户不配置这个值的时候,默认行为是不重试
DevChat
首先,我们需要在 goPool
结构体中添加一个新的字段 retryCount
来存储重试次数。然后,我们需要创建一个新的 Option
函数 WithRetryCount
来设置这个值。如果用户没有配置这个值,那么 retryCount
应该默认为 0,表示不进行重试。
在 worker
的 start
方法中,我们需要修改任务执行的逻辑。如果任务执行失败并且 retryCount
大于 0,那么我们应该重试执行任务,直到任务执行成功或者达到最大重试次数。
下面是修改后的代码:
package gopool
import (
"sync"
"time"
)
type goPool struct {
// ...
retryCount int
// ...
}
func NewGoPool(maxWorkers int, opts ...Option) *goPool {
pool := &goPool{
// ...
retryCount: 0, // Set retryCount to 0 by default
// ...
}
// ...
return pool
}
package gopool
import (
"sync"
"time"
)
func WithRetryCount(retryCount int) Option {
return func(p *goPool) {
p.retryCount = retryCount
}
}
package gopool
import (
"context"
"fmt"
)
func (w *worker) start(pool *goPool, workerIndex int) {
go func() {
for t := range w.taskQueue {
if t != nil {
var result interface{}
var err error
for i := 0; i <= pool.retryCount; i++ {
// ...
if err != nil && pool.errorCallback != nil {
if i < pool.retryCount {
continue // Retry the task if it failed and retryCount > 0
}
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
break // Break the loop if the task succeeded or reached the maximum retry count
}
// ...
}
pool.pushWorker(workerIndex)
}
}()
}
User
worker.go
func (w *worker) start(pool *goPool, workerIndex int) { go func() { for t := range w.taskQueue { if t != nil { var result interface{} var err error if pool.timeout > 0 {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
case <-ctx.Done():
// The context timed out, the task took too long
if pool.errorCallback != nil {
pool.errorCallback(fmt.Errorf("Task timed out"))
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
}
pool.pushWorker(workerIndex)
}
}()
}
当前 start 函数是这样的,我觉得已经太复杂导致新增 retry 功能有点困难了。你能不能重构当前函数,通过拆分子函数等方式让这个函数变得更加可维护,同时正确地讲 retry 逻辑加进去。
DevChat
首先,我们可以将任务执行和结果处理的逻辑抽取出来,形成两个新的方法:executeTask
和 handleResult
。这样可以使 start
方法更加简洁,也更容易理解。
然后,我们在 executeTask
方法中添加重试逻辑。如果任务执行失败并且 retryCount
大于 0,那么我们应该重试执行任务,直到任务执行成功或者达到最大重试次数。
下面是修改后的代码:
package gopool
import (
"context"
"fmt"
)
func (w *worker) executeTask(t task, pool *goPool) (result interface{}, err error) {
for i := 0; i <= pool.retryCount; i++ {
if pool.timeout > 0 {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err == nil || i == pool.retryCount {
return result, err
}
case <-ctx.Done():
// The context timed out, the task took too long
err = fmt.Errorf("Task timed out")
if i == pool.retryCount {
return nil, err
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err == nil || i == pool.retryCount {
return result, err
}
}
}
return
}
func (w *worker) handleResult(result interface{}, err error, pool *goPool) {
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
func (w *worker) start(pool *goPool, workerIndex int) {
go func() {
for t := range w.taskQueue {
if t != nil {
result, err := w.executeTask(t, pool)
w.handleResult(result, err, pool)
}
pool.pushWorker(workerIndex)
}
}()
}
User
worker.go
func (w *worker) executeTask(t task, pool *goPool) (result interface{}, err error) { for i := 0; i <= pool.retryCount; i++ { if pool.timeout > 0 { // Create a context with timeout ctx, cancel := context.WithTimeout(context.Background(), pool.timeout) defer cancel() // Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err == nil || i == pool.retryCount {
return result, err
}
case <-ctx.Done():
// The context timed out, the task took too long
err = fmt.Errorf("Task timed out")
if i == pool.retryCount {
return nil, err
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err == nil || i == pool.retryCount {
return result, err
}
}
}
return
}
请继续拆分这个函数,进一步提升可读性
DevChat
我们可以将 executeTask
函数进一步拆分为两个子函数:executeTaskWithTimeout
和 executeTaskWithoutTimeout
。这样可以使 executeTask
函数更加简洁,也更容易理解。
下面是修改后的代码:
package gopool
import (
"context"
"fmt"
)
func (w *worker) executeTaskWithTimeout(t task, pool *goPool) (result interface{}, err error) {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
return result, err
case <-ctx.Done():
// The context timed out, the task took too long
return nil, fmt.Errorf("Task timed out")
}
}
func (w *worker) executeTaskWithoutTimeout(t task, pool *goPool) (result interface{}, err error) {
// If timeout is not set or is zero, just run the task
return t()
}
func (w *worker) executeTask(t task, pool *goPool) (result interface{}, err error) {
for i := 0; i <= pool.retryCount; i++ {
if pool.timeout > 0 {
result, err = w.executeTaskWithTimeout(t, pool)
} else {
result, err = w.executeTaskWithoutTimeout(t, pool)
}
if err == nil || i == pool.retryCount {
return result, err
}
}
return
}
func (w *worker) handleResult(result interface{}, err error, pool *goPool) {
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
func (w *worker) start(pool *goPool, workerIndex int) {
go func() {
for t := range w.taskQueue {
if t != nil {
result, err := w.executeTask(t, pool)
w.handleResult(result, err, pool)
}
pool.pushWorker(workerIndex)
}
}()
}
User
gopool.go
func (p *goPool) dispatch() { for t := range p.taskQueue { p.cond.L.Lock() for len(p.workerStack) == 0 { p.cond.Wait() } p.cond.L.Unlock() workerIndex := p.popWorker() p.workers[workerIndex].taskQueue <- t if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers { worker := newWorker() p.workers = append(p.workers, worker) p.workerStack = append(p.workerStack, len(p.workers)-1) worker.start(p, len(p.workers)-1) } else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers { p.workers = p.workers[:len(p.workers)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] } } }这段代码先使用了Worker,分发了task,然后再判断扩缩容是否要执行,看起来逻辑反了。另外扩容我希望是不超过上限的时候成倍扩容,直到到达最大值;缩容是不小于最小值的时候减半缩容,直到缩到最小值;而不是每次扩缩1;是不是应该在一个单独的 goroutine 里定时检测并执行扩缩容操作,然后通过 Cond 和 dispatch 同步更合理
DevChat
你的建议很好,我们可以将扩缩容的逻辑放在一个单独的 goroutine 中,并通过定时器定时检查是否需要进行扩缩容。这样可以使 dispatch
函数更加简洁,也更容易理解。
我们可以创建一个新的方法 adjustWorkers
来处理扩缩容的逻辑。在 NewGoPool
函数中,我们启动这个 goroutine。
下面是修改后的代码:
package gopool
import (
"sync"
"time"
)
type goPool struct {
// ...
adjustInterval time.Duration
// ...
}
func NewGoPool(maxWorkers int, opts ...Option) *goPool {
pool := &goPool{
// ...
adjustInterval: time.Second, // Set adjustInterval to 1 second by default
// ...
}
// ...
go pool.adjustWorkers()
return pool
}
func (p *goPool) adjustWorkers() {
ticker := time.NewTicker(p.adjustInterval)
defer ticker.Stop()
for range ticker.C {
p.cond.L.Lock()
if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers {
// Double the number of workers until it reaches the maximum
newWorkers := min(len(p.workerStack)*2, p.maxWorkers) - len(p.workerStack)
for i := 0; i < newWorkers; i++ {
worker := newWorker()
p.workers = append(p.workers, worker)
p.workerStack = append(p.workerStack, len(p.workers)-1)
worker.start(p, len(p.workers)-1)
}
} else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers {
// Halve the number of workers until it reaches the minimum
removeWorkers := max((len(p.workerStack)-p.minWorkers)/2, p.minWorkers)
p.workers = p.workers[:len(p.workers)-removeWorkers]
p.workerStack = p.workerStack[:len(p.workerStack)-removeWorkers]
}
p.cond.L.Unlock()
}
}
func (p *goPool) dispatch() {
for t := range p.taskQueue {
p.cond.L.Lock()
for len(p.workerStack) == 0 {
p.cond.Wait()
}
p.cond.L.Unlock()
workerIndex := p.popWorker()
p.workers[workerIndex].taskQueue <- t
}
}
这里,min
和 max
是两个辅助函数,用于获取两个整数中的最小值和最大值。你可能需要在你的代码中实现这两个函数。