Prompts for GPT
User
gopool.go
package gopoolimport ( "sync" "time" )
// task represents a function that will be executed by a worker. // It returns a result and an error. type task func() (interface{}, error)
// goPool represents a pool of workers. type goPool struct { workers []*worker maxWorkers int minWorkers int workerStack []int taskQueue chan task lock sync.Locker cond *sync.Cond timeout time.Duration resultCallback func(interface{}) errorCallback func(error) }
// NewGoPool creates a new pool of workers. func NewGoPool(maxWorkers int, opts ...Option) *goPool { pool := &goPool{ maxWorkers: maxWorkers, minWorkers: maxWorkers, // Set minWorkers to maxWorkers by default workers: make([]*worker, maxWorkers), workerStack: make([]int, maxWorkers), taskQueue: make(chan task, 1e6), lock: new(sync.Mutex), timeout: 0, } for _, opt := range opts { opt(pool) } if pool.cond == nil { pool.cond = sync.NewCond(pool.lock) } for i := 0; i < pool.minWorkers; i++ { worker := newWorker() pool.workers[i] = worker pool.workerStack[i] = i worker.start(pool, i) } go pool.dispatch() return pool }
// AddTask adds a task to the pool. func (p *goPool) AddTask(t task) { p.taskQueue <- t }
// Release stops all workers and releases resources. func (p *goPool) Release() { close(p.taskQueue) p.cond.L.Lock() for len(p.workerStack) != p.maxWorkers { p.cond.Wait() } p.cond.L.Unlock() for _, worker := range p.workers { close(worker.taskQueue) } p.workers = nil p.workerStack = nil }
func (p *goPool) popWorker() int { p.lock.Lock() workerIndex := p.workerStack[len(p.workerStack)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] p.lock.Unlock() return workerIndex }
func (p *goPool) pushWorker(workerIndex int) { p.lock.Lock() p.workerStack = append(p.workerStack, workerIndex) p.lock.Unlock() p.cond.Signal() }
func (p *goPool) dispatch() { for t := range p.taskQueue { p.cond.L.Lock() for len(p.workerStack) == 0 { p.cond.Wait() } p.cond.L.Unlock() workerIndex := p.popWorker() p.workers[workerIndex].taskQueue <- t if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers { worker := newWorker() p.workers = append(p.workers, worker) p.workerStack = append(p.workerStack, len(p.workers)-1) worker.start(p, len(p.workers)-1) } else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers { p.workers = p.workers[:len(p.workers)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] } } }
worker.go
package gopoolimport ( "context" "fmt" )
// worker represents a worker in the pool. type worker struct { taskQueue chan task }
func newWorker() *worker { return &worker{ taskQueue: make(chan task, 1), } }
func (w *worker) start(pool *goPool, workerIndex int) { go func() { for t := range w.taskQueue { if t != nil { var result interface{} var err error
if pool.timeout > 0 {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
case <-ctx.Done():
// The context timed out, the task took too long
if pool.errorCallback != nil {
pool.errorCallback(fmt.Errorf("Task timed out"))
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
}
pool.pushWorker(workerIndex)
}
}()
}
option.go
package gopoolimport ( "sync" "time" )
// Option represents an option for the pool. type Option func(*goPool)
// WithLock sets the lock for the pool. func WithLock(lock sync.Locker) Option { return func(p *goPool) { p.lock = lock p.cond = sync.NewCond(p.lock) } }
// WithMinWorkers sets the minimum number of workers for the pool. func WithMinWorkers(minWorkers int) Option { return func(p *goPool) { p.minWorkers = minWorkers } }
// WithTimeout sets the timeout for the pool. func WithTimeout(timeout time.Duration) Option { return func(p *goPool) { p.timeout = timeout } }
// WithResultCallback sets the result callback for the pool. func WithResultCallback(callback func(interface{})) Option { return func(p *goPool) { p.resultCallback = callback } }
// WithErrorCallback sets the error callback for the pool. func WithErrorCallback(callback func(error)) Option { return func(p *goPool) { p.errorCallback = callback } }
Next, I want to add a task retry feature, and I still want to configure it through the Option method, allowing users to customize the number of retries. Of course, you need to note that when the user does not configure this value, the default behavior is not to retry.
DevChat
First, we need to add a new field retryCount
in the goPool
struct to store the number of retries. Then, we need to create a new Option
function WithRetryCount
to set this value. If the user does not configure this value, then retryCount
should default to 0, indicating no retries.
In the start
method of worker
, we need to modify the task execution logic. If the task execution fails and retryCount
is greater than 0, then we should retry the task execution until the task is successfully executed or the maximum number of retries is reached.
Here is the modified code:
package gopool
import (
"sync"
"time"
)
type goPool struct {
// ...
retryCount int
// ...
}
func NewGoPool(maxWorkers int, opts ...Option) *goPool {
pool := &goPool{
// ...
retryCount: 0, // Set retryCount to 0 by default
// ...
}
// ...
return pool
}
package gopool
import (
"sync"
"time"
)
func WithRetryCount(retryCount int) Option {
return func(p *goPool) {
p.retryCount = retryCount
}
}
package gopool
import (
"context"
"fmt"
)
func (w *worker) start(pool *goPool, workerIndex int) {
go func() {
for t := range w.taskQueue {
if t != nil {
var result interface{}
var err error
for i := 0; i <= pool.retryCount; i++ {
// ...
if err != nil && pool.errorCallback != nil {
if i < pool.retryCount {
continue // Retry the task if it failed and retryCount > 0
}
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
break // Break the loop if the task succeeded or reached the maximum retry count
}
// ...
}
pool.pushWorker(workerIndex)
}
}()
}
User
worker.go
func (w *worker) start(pool *goPool, workerIndex int) { go func() { for t := range w.taskQueue { if t != nil { var result interface{} var err error if pool.timeout > 0 {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
case <-ctx.Done():
// The context timed out, the task took too long
if pool.errorCallback != nil {
pool.errorCallback(fmt.Errorf("Task timed out"))
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
}
pool.pushWorker(workerIndex)
}
}()
}
The current start function is like this, and I think it's already too complex, making it a bit difficult to add the retry feature. Could you refactor the current function, make it more maintainable through splitting sub-functions, and correctly add the retry logic?
DevChat
First, we can extract the logic of task execution and result handling to form two new methods: executeTask
and handleResult
. This can make the start
method more concise and easier to understand.
Then, we add retry logic in the executeTask
method. If the task execution fails and retryCount
is greater than 0, then we should retry the task execution until the task is successfully executed or the maximum number of retries is reached.
Here is the modified code:
package gopool
import (
"context"
"fmt"
)
func (w *worker) executeTask(t task, pool *goPool) (result interface{}, err error) {
for i := 0; i <= pool.retryCount; i++ {
if pool.timeout > 0 {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err == nil || i == pool.retryCount {
return result, err
}
case <-ctx.Done():
// The context timed out, the task took too long
err = fmt.Errorf("Task timed out")
if i == pool.retryCount {
return nil, err
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err == nil || i == pool.retryCount {
return result, err
}
}
}
return
}
func (w *worker) handleResult(result interface{}, err error, pool *goPool) {
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
func (w *worker) start(pool *goPool, workerIndex int) {
go func() {
for t := range w.taskQueue {
if t != nil {
result, err := w.executeTask(t, pool)
w.handleResult(result, err, pool)
}
pool.pushWorker(workerIndex)
}
}()
}
User
worker.go
func (w *worker) executeTask(t task, pool *goPool) (result interface{}, err error) { for i := 0; i <= pool.retryCount; i++ { if pool.timeout > 0 { // Create a context with timeout ctx, cancel := context.WithTimeout(context.Background(), pool.timeout) defer cancel() // Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
if err == nil || i == pool.retryCount {
return result, err
}
case <-ctx.Done():
// The context timed out, the task took too long
err = fmt.Errorf("Task timed out")
if i == pool.retryCount {
return nil, err
}
}
} else {
// If timeout is not set or is zero, just run the task
result, err = t()
if err == nil || i == pool.retryCount {
return result, err
}
}
}
return
}
Please continue to split this function to further improve readability.
DevChat
We can further split the executeTask
function into two sub-functions: executeTaskWithTimeout
and executeTaskWithoutTimeout
. This can make the executeTask
function more concise and easier to understand.
Here is the modified code:
package gopool
import (
"context"
"fmt"
)
func (w *worker) executeTaskWithTimeout(t task, pool *goPool) (result interface{}, err error) {
// Create a context with timeout
ctx, cancel := context.WithTimeout(context.Background(), pool.timeout)
defer cancel()
// Create a channel to receive the result of the task
done := make(chan struct{})
// Run the task in a separate goroutine
go func() {
result, err = t()
close(done)
}()
// Wait for the task to finish or for the context to timeout
select {
case <-done:
// The task finished successfully
return result, err
case <-ctx.Done():
// The context timed out, the task took too long
return nil, fmt.Errorf("Task timed out")
}
}
func (w *worker) executeTaskWithoutTimeout(t task, pool *goPool) (result interface{}, err error) {
// If timeout is not set or is zero, just run the task
return t()
}
func (w *worker) executeTask(t task, pool *goPool) (result interface{}, err error) {
for i := 0; i <= pool.retryCount; i++ {
if pool.timeout > 0 {
result, err = w.executeTaskWithTimeout(t, pool)
} else {
result, err = w.executeTaskWithoutTimeout(t, pool)
}
if err == nil || i == pool.retryCount {
return result, err
}
}
return
}
func (w *worker) handleResult(result interface{}, err error, pool *goPool) {
if err != nil && pool.errorCallback != nil {
pool.errorCallback(err)
} else if pool.resultCallback != nil {
pool.resultCallback(result)
}
}
func (w *worker) start(pool *goPool, workerIndex int) {
go func() {
for t := range w.taskQueue {
if t != nil {
result, err := w.executeTask(t, pool)
w.handleResult(result, err, pool)
}
pool.pushWorker(workerIndex)
}
}()
}
User
gopool.go
func (p *goPool) dispatch() { for t := range p.taskQueue { p.cond.L.Lock() for len(p.workerStack) == 0 { p.cond.Wait() } p.cond.L.Unlock() workerIndex := p.popWorker() p.workers[workerIndex].taskQueue <- t if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers { worker := newWorker() p.workers = append(p.workers, worker) p.workerStack = append(p.workerStack, len(p.workers)-1) worker.start(p, len(p.workers)-1) } else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers { p.workers = p.workers[:len(p.workers)-1] p.workerStack = p.workerStack[:len(p.workerStack)-1] } } }This code first uses the Worker to distribute tasks, and then determines whether to execute the scaling operation, which seems logically reversed. Also, I hope that the expansion is to double the expansion when it does not exceed the upper limit, until it reaches the maximum value; the contraction is to halve the contraction when it is not less than the minimum value, until it shrinks to the minimum value; rather than expanding and contracting by 1 each time; Isn't it more reasonable to periodically check and execute the scaling operation in a separate goroutine, and then synchronize with Cond and dispatch?
DevChat
Your suggestion is good, we can put the scaling logic in a separate goroutine and check whether scaling is needed through a timer. This can make the dispatch
function more concise and easier to understand.
We can create a new method adjustWorkers
to handle the scaling logic. In the NewGoPool
function, we start this goroutine.
Here is the modified code:
package gopool
import (
"sync"
"time"
)
type goPool struct {
// ...
adjustInterval time.Duration
// ...
}
func NewGoPool(maxWorkers int, opts ...Option) *goPool {
pool := &goPool{
// ...
adjustInterval: time.Second, // Set adjustInterval to 1 second by default
// ...
}
// ...
go pool.adjustWorkers()
return pool
}
func (p *goPool) adjustWorkers() {
ticker := time.NewTicker(p.adjustInterval)
defer ticker.Stop()
for range ticker.C {
p.cond.L.Lock()
if len(p.taskQueue) > (p.maxWorkers-p.minWorkers)/2+p.minWorkers && len(p.workerStack) < p.maxWorkers {
// Double the number of workers until it reaches the maximum
newWorkers := min(len(p.workerStack)*2, p.maxWorkers) - len(p.workerStack)
for i := 0; i < newWorkers; i++ {
worker := newWorker()
p.workers = append(p.workers, worker)
p.workerStack = append(p.workerStack, len(p.workers)-1)
worker.start(p, len(p.workers)-1)
}
} else if len(p.taskQueue) < p.minWorkers && len(p.workerStack) > p.minWorkers {
// Halve the number of workers until it reaches the minimum
removeWorkers := max((len(p.workerStack)-p.minWorkers)/2, p.minWorkers)
p.workers = p.workers[:len(p.workers)-removeWorkers]
p.workerStack = p.workerStack[:len(p.workerStack)-removeWorkers]
}
p.cond.L.Unlock()
}
}
func (p *goPool) dispatch() {
for t := range p.taskQueue {
p.cond.L.Lock()
for len(p.workerStack) == 0 {
p.cond.Wait()
}
p.cond.L.Unlock()
workerIndex := p.popWorker()
p.workers[workerIndex].taskQueue <- t
}
}
Here, min
and max
are two helper functions used to get the minimum and maximum of two integers. You may need to implement these two functions in your code.